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A Fast Multistream Scattering-Based Jacobian for
Microwave Radiance Assimilation

Alexander G. Voronovich, Albin J. Gasiewski, Fellow, IEEE, and Bob L. Weber

Abstract—The full utilization of satellite-based passive mi-
crowave imagery for weather forecasting rests on the ability to
assimilate radiances into numerical weather prediction (NWP)
models for highly scattering and absorbing hydrometeor states.
State vector updates need to be performed rapidly enough to main-
tain pace with the sensor data stream and require, in particular,
rapid calculation of the tangent linear relationship (Jacobian) be-
tween the observed antenna temperatures and the NWP prognostic
hydrometeor parameters. To facilitate the use of both spaceborne
and airborne passive microwave data in numerical forecasting, we
present a new rapid multiple-stream discrete-ordinate algorithm
for calculating the Jacobian under arbitrary scattering and ab-
sorbing conditions. The algorithm is based on the layer-adding
method for a plane-parallel atmosphere for which the number
of operations required to compute the solution is proportional to
the number of layers. A nontrivial aspect of the problem is the
stable calculation of the reflectance and transmittance operators
in highly scattering layers for which a diagonalization technique
and analytical factorization of specific matrices are used to ensure
stability. Scaling calculations suggest that the new algorithm will
be suitable for use in real-time all-weather microwave radiance
assimilation.

Index Terms—Assimilation, Jacobian, microwave, radiance.

I. INTRODUCTION

SPACEBORNE passive microwave sensors provide a unique
means of measuring atmospheric and surface variables due

to their ability to observe through clouds over a predictable and
wide range of probing depths (e.g., [1]). Useful passive mi-
crowave channels for measurement of atmospheric or surface
variables are located at window, , and absorption bands
from as low as 1.4 GHz [2] to over 1500 GHz [3]. Data from
such sensors are regularly used, for example, to measure tem-
perature and moisture profiles in regions opaque to infrared (IR)
sounders [4] and to map rainfall rate. Although rainfall measure-
ments are most accurate within convectively driven systems and
over a water background [5], passive microwave data have also
been proven valuable in measuring rainfall rate and other useful
raincell parameters over land and snow backgrounds [6], [7].
Other important satellite microwave observables include ocean
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surface wind speed and direction [8]–[10] and cloud water and
ice path [11], [12].

Several low-earth orbiting passive microwave sensors are
maintained for operational weather nowcasting and forecasting
purposes, including the Advanced Microwave Sounding Unit
A/B sensors on the National Oceanic and Atmospheric Ad-
ministration (NOAA)–15, –16, and –17 spacecraft, and the
Special Sensor Microwave/Imager (SSM/I) and the Special
Sensor Microwave/Temperature Sounder 2 (SSM/T-2) on
the U.S. Defense Meteorological Satellite Program (DMSP)
spacecraft. Additional sensors planned for operational weather
forecasting include the NOAA Polar-orbiting Operational
Environmental Satellites (NPOES) Conical-Scanning Mi-
crowave Imager/Sounder (CMIS) and Advanced Technology
Microwave Sounder (ATMS) sensors [13]. Passive microwave
sensors designed for research purposes but potentially useful
for operational weather forecasting include the National Aero-
nautics and Space Administration (NASA) Tropical Rainfall
Measuring Mission (TRMM) Microwave Imager, the U.S.
Navy WindSat [14] sensor, and the Advanced Microwave
Scanning Radiometer E (AMSR-E) and AMSR sensors on the
NASA Aqua and the National Space Development Agency of
Japan (NASDA) Advanced Earth Observing Satellite (ADEOS)
platforms [15]. The stream of data from polar orbiting passive
microwave satellites, thus, provides frequent global coverage
with particularly high density at the higher latitudes.

While data from passive microwave satellites have been
proven valuable in retrievals, their use for directly updating
operational numerical weather prediction (NWP) models via
radiance assimilation has been limited to cases of either clear
air or mostly thin, nonscattering clouds. There are several
reasons for this limitation, including the inability of existing
operational NWP models to simulate subgrid cloud and pre-
cipitation dynamics [16], [17] accurately enough to predict
satellite microwave data, and challenges in updating either
3D-var or 4D-var NWPs [18], [19] while maintaining both
thermodynamic consistency and numerical stability. As a re-
sult, the full potential of microwave data in locating regions of
heat and momentum transfer (as determined by the presence of
precipitation, either convective or stratiform) and in improving
knowledge of the thermodynamic state and frontal boundaries
within heavy clouds remains untapped. In clear air, there are
no significant advantages of microwave signals relative to IR
signals for improving the thermodynamic state, and future IR
sounders (e.g., [20]) will further extend IR capabilities to even
broken cloud fields. For continuous and/or heavy clouds and
precipitation, however, the information within microwave data
is essential.

To extend microwave radiance assimilation to meteorological
regions where it would be of greatest value—e.g., pre- and post-
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frontal zones, occluded landfalling jets, hurricane rainbands,
and other cloud-covered forecast-sensitive regions—it is neces-
sary (among other things) to perform fast calculations of the in-
cremental sensor response functions for all meteorological con-
ditions. Maximum a posteriori estimation of the optimal change
in an NWP model’s background state vector using a satellite
observation vector can be based on the minimization of a cost
functional

(1)
where is the adjusted state vector, is the NWP model state
error covariance matrix (generally a function of the state vector

), is the satellite sensor and forward radiative transfer model
error covariance matrix, is the mapping from the NWP
state vector to sensor observable, and supersciprt denotes
transposition. For passive microwave sensors, represents
both the forward radiative transfer and antenna pattern convo-
lution processes, and is both an injective and nonlinear map-
ping. A Bayesian solution to the minimization problem can
be shown to be

(2)

where is the tangent linear approximation to
the observation process or the Jacobian of the process.

Currently, the fraction of data from spaceborne passive mi-
crowave sensors that can be assimilated into NWP models re-
mains limited in part due to an inability to rapidly and accu-
rately compute the Jacobian over heavy clouds and precipita-
tion and for all significant prognostic variables. This limitation
necessarily leads to poor minimization of over such regions.
For example, 1D-var retrievals of humidity, ocean surface wind
speed, and cloud liquid water path were successfully demon-
strated in an NWP environment using SSM/I data [21], but lim-
ited to cloud densities below 0.4 . Beyond this den-
sity, the cost function exceeded the number of observational
degrees of freedom. A comprehensive forward transfer model
and Jacobian incorporating both absorption and scattering are
required to provide both an appropriate number of degrees of
freedom in the modeled sensor field and the capability to min-
imize . In addition to radiance assimilation, the Jacobian is
valuable for nonlinear retrievals wherein the background atmo-
spheric and surface states are determined from an NWP model,
climatology, or other related means.

In general, the Jacobian can be described using the chain rule
as a product of three components

(3)

where the three subscripts , , and denote Jacobian compo-
nents connecting (respectively): variations in the instrument
response to variations in the radiance field, variations in the
radiance field to variations in the fundamental electromagnetic
parameters of the atmosphere or surface, and variations in
the fundamental electromagnetic parameters to variations in the
NWP prognostic variables. These components are termed the
instrument, radiation, and geophysical Jacobians, respectively.
Thus, is the partial derivative matrix of the solution of the

differential radiative transfer equation (DRTE) with respect to
temperature and all bulk absorption, scattering, phase matrix,
and surface bistatic scattering parameters. Although all three
components of are required to solve (1) and (2), we focus
here on a new method for rapid and accurate calculation of the
radiation Jacobian .

Current numerical techniques used to calculate for scat-
tering media have been based on either approximations using
only two streams of radiation [22] or other more exact but rela-
tively slow techniques (e.g., numerical differences [23] or per-
turbation solutions [24]). It has been shown, however, that ne-
glect of the angular dependence of the radiation field in the two-
stream model leads to overestimation of the cloud-top albedo.
This error is the result of underestimating the mean free path of
photons reflected at the cell top and can cause underestimation
of brightness temperatures by up to 20–30 K at opaque 118-GHz
channels [25]. Use of multiple streams (e.g., [26]) solves this
problem but at greater computational expense, particularly if di-
rect matrix inversion is used. The problem can also be solved for
specific cases using a two-stream model with -scaling [27], but
the solution is not guaranteed to be general.

In this paper, we discuss a new discrete-ordinate multiple-
stream method for solving the DRTE for a plane parallel atmos-
phere based on the layer-adding method [29]. The atmosphere is
represented as a stack of horizontal layers with constant proper-
ties within each layer. The solution of the direct problem is rep-
resented in the form of explicit recurrence relations. As such,
differentiation of the solution with respect to the fundamental
electromagnetic parameters is straightforward. A nontrivial as-
pect is calculation of the Jacobian with a number of operations
proportional to the number of layers , and not to as would
be in a divided difference approach. Another nontrivial aspect
is the stable calculation of reflectance and transmittance opera-
tors for both highly scattering and nearly transparent individual
layers (e.g., [28]). The solution requires the calculation of ex-
ponential matrix functions carried out in a diagonal represen-
tation of appropriate operators. The operators are represented
as the product of pairs of symmetric positive-definite matrices;
thus, the diagonalization involves only symmetric matrices for
which standard numerical procedures exist. Notwithstanding,
direct application of the appropriate analytic expressions for the
reflectance and transmittance operators of individual layers re-
quires inversion of a particular matrix, which becomes ill-con-
ditioned for radiometrically thick layers. To accurately compute
the inverse for all cases of opacity and albedo, we perform an an-
alytic factorization of this matrix. Using the factored matrix, the
numerical stability of the overall solution is maintained without
restriction.

II. SYMMETRIZED NUMERICAL DRTE

The DRTE for the brightness temperature in a planar
stratified atmosphere and for a single polarization takes the fol-
lowing form [30]:

(4)
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where is the absorption coefficient, is the scattering coef-
ficient, is the extinction coefficient, and
is the thermodynamic atmospheric temperature. These parame-
ters, along with the normalized azimuthally averaged scattering
phase function are generally functions of height .
All angular dependencies can be considered to be functions of
the variable rather than the direction of propagation

itself. Accordingly, we obtain

(5)

The boundary condition at corresponds to scattering from
a rough surface having thermodynamic temperature

(6)

Here, is the surface bistatic scattering matrix. As in the
case of , the surface function is an azimuthally averaged scat-
tering cross section per unit surface area. For the natural case of
reciprocal media, we note that the scattering function is sym-
metric: . We assume for simplicity that po-
larizations are uncoupled by both surface and hydrometeor scat-
tering. Finally, at the topmost atmospheric level , the
downward propagating cosmic background radiation tempera-
ture is

(7)

Equation (7) can be easily modified to model the small galactic
radiation contribution. In the above formulation, we have im-
plicitly assumed the Rayleigh–Jeans approximation, although
doing so does not restrict the solution since the full Plank func-
tion can be substituted in place of , , and .

Discretizing the DRTE over a set of quadrature angles [31]
results in the following set of angularly coupled equations:

(8)

where and is the number of quadrature angles
between zenith and the horizon (i.e., the number of upward or
downward propagating streams). Here, we have

(9)

and the are appropriate positive quadrature weights. Opti-
mally, the are selected to be the Christoffel weights [32] to
implement Gauss–Legendre quadrature, although in principal
any quadrature scheme can be used. In the above discrete or-
dinate approach, we have separated the up- and downwelling
components of radiation ( ,and , respectively), and all
are positive. According to Kirchhoff’s law for reciprocal media,
the discretized scattering matrix is symmetric with respect to
simultaneous permutation of angular indexes

(10)

We will assume also that the hydrometeor absorption and scat-
tering properties are invariant with respect to up/down propaga-
tion, in which case

(11)

Thus, the phase function is symmetric with respect to indepen-
dent permutations of both upper and lower indexes. Using the
Henyey–Greenstein phase matrix we can take scattering asym-
metry into account through the asymmetry parameter

(12)

where . Finally, boundary conditions for the dis-
cretized equations are

(13)

and in the case of a specular surface, we have

(14)

where is the Fresnel reflection coefficient for the corre-
sponding angle.

Symmetry properties of (8) are very significant to our ap-
proach. Following [33], to make the equations explicitly sym-
metric, we introduce new variables for the upwelling and down-
welling streams as follows:

(15)
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Now, (8) takes the following form:

(16)

where

(17)

(18)

(19)

The boundary condition at the surface becomes

(20)

where

(21)

and

(22)

and the boundary condition at the top of the atmosphere be-
comes

(23)

The vector quantities , , and represent sources due
to atmospheric, surface, and cosmic background radiation, re-
spectively. Equations (16) with boundary conditions (20) and
(23) thus represent the problem to be solved.

It is important in our approach that the matrices
and are both symmetric and positive semidefinite, a
condition which immediately follows from Gershgorin’s circle
theorem and noting that . To illustrate its application
we reproduce the argument. Let , be an eigenvalue and the
corresponding eigenvector of the following symmetric matrix,
which is part of the matrix :

(24)

and let be an index corresponding to the maximal value of
the ratio , that is for all

. Since an eigenvector is defined to within an arbitrary multi-
plying factor, we can assume that . It thus follows that

(25)

where the symmetry and nonnegativeness of the entries of the
phase matrix were used. The remainder of the matrix
which is not accounted for in (24) represents a diagonal matrix
with positive entries proportional to the total (gaseous and hy-
drometeor) absorption. Thus, the matrix is, in gen-
eral, positive semidefinite and positive definite in the presence
of some gas and/or hydrometeor absorption. The same argument
can be applied to the case of the matrix .

III. REFLECTION AND TRANSMISSION OPERATORS

FOR A SINGLE LAYER

To solve the discrete ordinate system, we represent the at-
mosphere as a stack of homogeneous layers within which the
medium properties (matrices , , and ) are assumed con-
stant. The layers are not necessarily thin, and brightness tem-
perature can change greatly within a layer. Thus, the method
is accurate even in many practical cases where a layer may
be nearly opaque. The overall solution subsequently uses the
adding method (e.g., [34]) in a recursion to calculate the prop-
erties of a stack of layers by adding one layer to the stack at
a time. This approach allows not only robust and quick calcu-
lation of the brightness temperature profile itself, but also fast
calculation of the radiation Jacobian .

To proceed, we describe solutions for the reflection and
transmission matrices ( and ) for a single layer embedded
in vacuum between levels and . Here and below,
all values characterizing radiation field solutions are assumed
to be vectors of length , with one entry for each angle. We
assume an external radiation field incident on the layer
from below for which the reflected and transmitted fields and

at and , respectively, are described by (Fig. 1)

(26)

(27)

As a result of assumed mirror symmetry of the layer, the same
matrices and will also describe the upward and downward
propagating fields at the top and bottom of the layer caused by
external radiation incident from above. The matrices and are
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Fig. 1. Calculation of the reflection and transmission operators and
self-radiation field for a single layer.

independent of internal sources (described in (16) by ) and are
related to the solutions of the homogeneous coupled DRTE

(28)

The above system1 is governed only by matrices and . The
general solution of (28) can be represented as follows:

(29)

where

(30)

and the following matrix functions have been introduced:

(31)

The simplest way to ensure that (29) is a solution of (28) is
by direct substitution and making use of the following matrix
identity:

(32)

where is an arbitrary matrix function. (This identity is obvious
for integer powers and, thus, holds for any analytic
matrix function.)

We can now express the matrices and in terms of and
. The field at is and , and at it

is , and . Substituting these values into relation
(29), we find

(33)

1Note that (28) coincides with [28, eq. (78)] with the important difference
being that our submatrices A and B are symmetric.

where the matrices and are calculated at . Carrying
out the matrix multiplications and considering the second row
of the system yields

(34)

from which we find the reflection matrix

(35)

To obtain a similar expression for , we first rewrite (33) as

(36)

One can ascertain this identity by direct calculation. Equiv-
alently, (36) follows immediately from (33) by noting that
according to symmetry the inverse of the hyperbolic matrix
becomes

(37)

Following the general procedure used to find , we can solve
(36) for the transmission matrix

(38)

Owing to thermal emission, the layer will also generate at its
upper surface an upward propagating radiation field, which we
denote as . Due to mirror symmetry of the layer, the
downward propagating thermal radiation field at will be
also equal to , i.e., . The general solution of
the inhomogeneous equation

(39)

can (by inspection) be represented as the sum of a constant ( -in-
dependent) vector

(40)

superposed on any solution of the homogeneous equation (28).
The particular solution describing the self-radiation of the layer
should have an upwelling component that vanishes at and
a downwelling component that vanishes at . By adding an
artificial external component of radiation incident
onto the layer from below we compensate the upwelling compo-
nent at . This added field produces an additional com-
ponent of the upwelling propagating field at the top of the layer
equal to . Similarly, an artificial external component of
radiation incident onto the layer from above will
compensate the downwelling component at the top .
In turn, this added field will produce an additional component
of the upwelling propagating field at the top of the layer equal
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to . Adding these contributions results in an expression
for the thermally emitted field in terms of matrices and

(41)

Physically, we interpret the term as an effective emis-
sivity matrix for the layer, with the remaining terms proportional
to the layer temperature and related dimensionless factors. It can
be easily proven that the matrices and are both symmetric.

IV. CALCULATION OF EXPONENTIAL OPERATORS

For the case of a general atmosphere, we need to be able to
accurately calculate functions of the matrix operators entering
(35) and (38). For sufficiently small matrices and/or
(so that the geometric mean product is small), one can
directly apply Taylor expansions

(42)

(43)

In the general case, however, the above expansions require too
many terms for practical and accurate implementation. A uni-
versal means to calculate a matrix function is first to transform
it into a diagonal form. In our procedure, this problem is greatly
simplified by the fact that the matrices and are symmetric
and positively definite. Since is symmetric, it can be repre-
sented as follows:

(44)

where is an orthogonal matrix consisting of eigenvectors of
the symmetric matrix

(45)

and is a diagonal matrix of associated eigenvalues. Since
is symmetric, all of its eigenvalues are guaranteed to be real, and
since is positive definite, these eigenvalues are nonnegative.
Next, we define a second symmetric matrix .
This matrix is also positive definite, since all entries of
are real and nonnegative, and the matrix is positive definite.
Thus, this matrix can also be represented in diagonal form with
the help of another orthogonal matrix

(46)

where the matrix is a diagonal matrix of associated nonneg-
ative eigenvalues. Using (45) and (46), the product can be
represented as

(47)

This is, in fact, a diagonal representation of the matrix , since

(48)

As a result, any arbitrary analytic function of the matrix
can be calculated as follows:

(49)

For the general case, the only nontrivial operation associated
with the calculation of matrices and is, thus, a diagonaliza-
tion of two real symmetric matrices. This operation is amenable
to very effective standard numerical procedures.

V. STABLE CALCULATION OF REFLECTION

AND TRANSMISSION OPERATORS

Equation (49) solves the problem of calculating the matrix
operators and . Subsequently, the matrices and can be
obtained by inversion of the matrix

(50)

and substitution into (35) and (38). Although analytically cor-
rect, this procedure cannot be blindly applied in practice, es-
pecially for nontransparent layers. The problem is that for sig-
nificantly opaque layers, the matrix functions and contain
fast growing exponentials that quickly lead to numerical over-
flow. Simple extraction of the fastest growing exponential factor
from the matrix does not help, as we shall discuss shortly. This
problem manifests itself as a well-known instability associated
with implementation of the discrete ordinate method (e.g., see
[28]).

To circumvent this problem, we need to look closer at the
structure of . Using the expansions in (44) and (47) along with
the orthogonality relation (45) (which holds for the orthogonal
matrix as well), one can check by direct calculation that
can be represented in the following form:

(51)

where

(52)

(53)

and

(54)

Similarly, one can represent the other matrix factor entering (35)
as

(55)
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Fig. 2. Illustration of the derivation of recursion relations for (a) upward marching and (b) property variations within a single layer.

where

(56)

Note that the matrices associated with the hyperbolic functions
in (52)–(54) and (56) are all diagonal; thus, their calculation is
straightforward. Using the factorizations in (51) and (55), we
obtain the following compact expressions for the reflection and
transmission matrices and for a single layer:

(57)

(58)

In contrast to the original expressions in (35) and (38), the
representations in (57) and (58) remain numerically bounded in
the limit . In this case, the matrices , , and tend to
finite limits, since . Simultaneously, the
values become exponentially small, and according to (57),
the transmission matrix tends exponentially to zero as would be
expected physically. Meanwhile the reflection operator tends
to a fixed limit, since the diagonal matrix does not influence
(58).

Equation (51) reveals why direct inversion of given by (50)
fails for sufficiently opaque layers. In this case, the condition
number of the matrix is determined primarily by the condition
number of the matrix , which grows exponentially with layer
thickness. In other words, for thick layers, the matrix is dom-
inated by its largest entry, which according to (54) corresponds
to the maximal eigenvalue . Due to limited representational
accuracy, this eigenvalue effectively nullifies the impact of all
other eigenvalues of . Thus, the matrix effectively becomes
singular, and if calculated according to (50), it cannot be numer-
ically inverted.

On the other hand, explicit inversion according to (57) will
always work. In fact, the larger the value of , the less will
be its contribution to , and the more that the operator

will be determined by the smallest value of . This
eigenvalue corresponds to the angular radiation mode with the
least attenuation through the layer.

VI. SOLUTION FOR MULTIPLE LAYERS

Let us now consider a stack consisting of layers. We denote
the vector of emitted thermal radiation at the top of the stack as

. The reflection matrix is similarly defined with ref-
erence to a single layer as a matrix that transforms the down-
welling component of the radiation field incident on the
stack from above into an associated upward propagating field

(59)

For clarity, we use uppercase characters to denote a stack of
layers and lowercase characters to denote an individual layer.
Let us assume that an extra th layer with matrices ,
, and is to be added to the top of an existing stack of

layers. At the boundary between the stack and an extra layer,
there will be present thermal radiation fields (upwelling)
and (downwelling) along with additional fields and

due to multiple reflections of the thermal fields from the extra
layer and the stack. Thus, the total upwelling and downwelling
components of radiation at the boundary will be equal to

and , respectively [Fig. 2(a)].
According to the definitions of the operators and , one

thus obtains

(60)

(61)

The thermal field at the top of an extra layer (i.e., of the
extended stack) will be

(62)
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Equations (60) and (61) can be easily solved to obtain

(63)

Similarly, if an external downwelling field is incident on
the top of the extended stack, this will result in the presence at
the boundary between the initial stack and the extra layer two
additional up- and downwelling fields and . Those fields
must satisfy the following equations:

(64)

(65)

The upwelling components of the field due to at the top of
the extended stack, which by definition is equal to ,
can be expressed as follows:

(66)

Solving (64) and (65) and substituting the result into (66), we
obtain

(67)

Note that the reflection matrix values are constrained to be less
than unity, provided that some absorption is present. It, thus,
follows that the matrix is nonsingular, and hence
invertible. The opposite would imply the presence of trapped
radiation “modes” that could exist within the stack even without
external sources of radiation. It is straightforward to show that
all matrices are symmetric.

Once the and matrices for all individual layers are known,
(63) and (67) provide a means for recurrent calculation of the
thermal radiation field and overall reflection matrix by
combining layers starting from the bottom to the top

. At the bottom, the initial conditions are given by the
boundary condition in (20)

(68)

and

(69)

where is defined in (21). Once the operator at the top of
the stack is reached, we calculate components of the field at the
top by

(70)

(71)

The fields at the boundaries between layers can now be cal-
culated by downward recursion. If the fields at the top of the th
layer are and , and those at the bottom of the th layer
are and , then the following relations hold:

(72)

(73)

where and are reflection and transmission operators, and
is the self-radiation field of the th layer. A recursive solution
of these equations is as follows:

(74)

(75)

Using (74) and (75), one can proceed to compute the fields at
each boundary between the layers from the top to the bottom of
the stack. If necessary, one can also calculate the fields within
each layer using (29). The number of operations required using
this algorithm is, thus, directly proportional to total number of
layers .

VII. RADIATION JACOBIAN SOLUTION

The rows of the Jacobian are the incremental bright-
ness sensitivity profiles (e.g., [35]) that are essential for both
retrievals and radiance assimilation. These profiles require cal-
culation of , the derivatives of the brightness field at some
fixed altitude and angle with respect to all radiative parameters
of the atmosphere, specifically

(76)

where the parameter is either , , , or for the th
level. For simplicity, we assume the observation level to co-
incide with one of the boundaries between
the layers (e.g., for satellite-based observations).

Although the approach presented in the previous section can
be used to calculate , straightforward application can lead to
a relatively inefficient algorithm. The reason for the inefficiency
is that variations of the parameters characterizing the radiative
properties of any specific layer (i.e., matrices , and source

for some value of ) will result in variations of the reflection
operators and self-radiation fields for all stacks that contain this
layer. Accordingly, a complete upward and downward recursion
is required to be repeated for variations within each successive
layer. In this case, the total number of operations required will
be proportional to , and not . For this reason, we slightly
modify our approach to calculate .

Recall first that during upward recursion, we calculated and
stored all reflection operators and upwelling self-radiation
fields , . In this section, we modify our no-
tation for these reflection operators by denoting them as .
Now, using the same (63) and (67), we calculate during down-
ward recursions similar reflection operators and down-
welling self-radiation fields for stacks of layers that in-
clude the th layer and all layers above it. Initial conditions for
this recursion are and . Thus, if an
external field is incident onto the stack of layers from below,
then will represent the reflected downward prop-
agating field, and will represent the downwelling self-ra-
diation at the bottom of each upper stack (i.e., the bottom of the

th layer). Note that the number of layer operations required for
the calculation of all these values is still proportional to .
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Consider the brightness variation with respect to any radia-
tive parameter within a specific ( th) layer, where

. At the top of this layer will be present downwelling
self-radiation from the upper stack and upwelling self-
radiation from the layer . Similarly, at the bottom of the
layer will be present downwelling self-radiation from the layer

and upwelling self-radiation from the lower stack
. As a result of the interaction of the radiation fields

within the stacks and the th layer, at the bottom of this layer
will appear additional upward and downward propagating fields,
denoted as , , respectively. Similarly, at the top of the th
layer will appear additional fields, denoted as , [Fig. 2(b)].
As in the previous section, using definitions of the reflection and
transmission operators, we obtain the following equations for
these additional fields:

(77)

(78)

(79)

(80)

These equations can be easily solved. Substituting (77) and (78)
into (79) and (80), we obtain

(81)

(82)

where

(83)

and

(84)

(85)

From (81) and (82), we find

(86)

(87)

Similar expressions for and follow after substitution of
(86) and (87) into (77) and (78).

An important advantage of this form of solution is that varia-
tion of the radiative parameters at the th layer leads only to
variations of , , and , with no effect on ,

, , and . Let us denote the derivative with

respect to any radiative parameter by a dot. Once is spec-
ified, the values , , follow explicitly, as do the values

, , and for all layers . Now, expres-
sions for and immediately follow from (83)–(85)

(88)

(89)

(90)

Expressions for , follow after differentiation of (86) and
(87) (we skip the cumbersome result of this straightforward cal-
culation). Finally, expressions for and follow upon differ-
entiation of (77) and (78)

(91)

Calculation of the derivatives , , and can be per-
formed by direct differentiation of the explicit expressions in
(57), (58), and (41). The only nontrivial operation here is differ-
entiation with respect to the parameter matrices , , and

, . However, this task is essentially equivalent to calcula-
tion of the first-order perturbations of the eigenvalues and eigen-
vectors of a symmetric matrix—a well-known procedure from
quantum mechanics (e.g., [36]). In terms of our problem, the
result can be stated as follows. Let a symmetric matrix de-
pending on some parameter be represented in diagonal form

(92)

where diag is a diagonal matrix of eigen-
values, and is an appropriate orthogonal matrix of eigenvec-
tors. Both and depend on the parameter . Then

(93)

and

(94)

Note that standard quantum-mechanical formulas correspond to
the case where , i.e., the diagonal representation of the
Hamiltonian.

The final operation is the calculation of the impact of
the derivatives , , , and of the fields at each of

levels at the observation level where the
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radiometer is located. This recalculation can be done using (74)
and (75) with the only difference being that the reflection and
transmission operators and and self-radiation field are
replaced by the appropriate operators, and self-radiation fields
corresponding not to a single layer, but rather to a stack of
layers located between the current layer and observation layer

. These operators are also calculated recursively for all
stream angles following the same pattern that was presented in
the previous section, with the exception that the recursion now
involves two different reflection and transmission operators
that describe the cases for external radiation incident onto the
stack from below and above, respectively. Note that for the
case of a single layer, the operators coincide and are equal
to and . In any case, the number of operations required to
calculate the radiation Jacobian using this approach is still
directly proportional to the total number of layers .

VIII. NUMERICAL EXAMPLE

Geophysical features of the radiation Jacobian for a heavy
scattering scenario are illustrated using calculations based on
microphysical data from a numerical simulation of a hurricane.
The simulation uses 6-km horizontal resolution and 60-level mi-
crophysical cloud data obtained from an MM5 model run for
Hurricane Bonnie (August 26, 1998) [37]. Hydrometeor mi-
crophysical evolution is explicitly computed using the Reisner
five-phase cloud model [12], [16]. Both brightness temperature
fields and their derivatives with respect to the scattering and ab-
sorption coefficients and temperature were computed for a total
of 74 500 profiles using radiation streams.

A nadir brightness map for a channel at 180.31 17 GHz
is shown in Fig. 3, along with cross-sectional cuts through the
hurricane eyewall and rainbands at 33 latitude illustrating the
radiative parameters [Fig. 3(b) and (c)] and the radiation Ja-
cobian [Fig. 3(d)–(g)]. For purposes of illustration, we plotted
the scaled derivatives and

rather than the direct deriva-
tives in the cross-sectional cuts. To account for the varying layer
thicknesses, each Jacobian element is scaled by the inverse
layer thickness ; thus, the dimensions are in
units of kelvin per kilometer (K/km), except for ,
which is in units of per kilometer (km ).

From Fig. 3(d), we see that the Jacobian elements for vari-
ations in are always negative, since increases in scattering
within the cloud tops increase the amount of reflection of the
cold cosmic background temperature. Such large negative sensi-
tivities are associated with most of the rainband and eyewall re-
gion, and extend several kilometers deep through the cloud-top
ice layer down to the melting layer. Below the melting layer,
the hydrometeors become liquid and no longer reflect as much
due to both the opacity of the ice layer overhead and their liquid
state.

While the sensitivity to is negative, Fig. 3(e) shows
Jacobian elements for variations in that are either positive
or negative in sign, explained as follows: over regions of weak
scattering or surface reflection, any increase in absorption
causes the altitude of maximum photon emission to ascend.
Since the thermodynamic lapse rate is predominantly negative
below the tropopause, the brightness temperature is thereby

reduced; hence, the Jacobian element is negative. However,
over strong scattering or surface reflection, the brightness is
dominated by cold reflection from the cosmic background, and
any additional absorption reduces this reflectivity. Effectively,
the reflecting cloud top (which could have up to 60% reflec-
tivity at certain millimeter wavelengths) or surface becomes
a less reflective mirror, resulting in an increase in brightness
temperature. Hence, the Jacobian element is positive over such
layers. This bimodal behavior in the incremental response to
absorption attests to the importance of accommodating scat-
tering and surface reflection in microwave radiance assimilation
methods.

Fig. 3(f) shows the Jacobian elements for scattering asym-
metry , which are always positive. Variations in resulting
from, for example, mean hydrometeor size changes, effectively
vary the mean direction in which photons are scattered. An in-
crease in in the cloud top ice layer, for example, is associated
with an increase in the percentage of photons that are scattered
forward, and hence an effective reduction in scattering coeffi-
cient. Accordingly, the cloud top reflectivity is reduced and the
brightness temperature increased. Although the impact of vari-
ations in are smaller than those of other radiative parameters,
neglect of asymmetry can result in errors of up to several tens
of kelvins.

Finally, Fig. 3(g) shows the Jacobian elements for . At
the extreme eastern edge of the cut, we see that the incremental
response takes the familiar form of the clear-air temperature
weighting function. As one proceeds westward into the rain-
bands and eyewall, the additional absorption from clouds and
rain causes the temperature weighting function peak to ascend
to higher altitudes. Profiles of extreme absorption have the peak
lifted to the level of the clouds tops in the eyewall region.

IX. COMPLEXITY AND SPEED

As discussed, the number of operations required for calcu-
lation of both the brightness temperature profile and radiation
Jacobian for all stream angles is directly proportional to the
total number of layers . With regard to the calculation of
for NWP assimilation, this result cannot be taken for granted.
The number of operations required for a discrete ordinate solu-
tion with a divided difference Jacobian is , and an iterative
perturbation solution is . The algorithm also involves ma-
trix operations such as matrix multiplications and matrix inver-
sions as well as matrix diagonalizations, each of which requires
a number of operations proportional to , where is the total
number of angles. Thus, the overall number of operations is pro-
portional to .

The algorithm presented in the previous sections was realized
as a Fortan 90 computer code. The code was tested by com-
paring the left- and right-hand sides of (8) for test scattering at-
mospheres at 19.22 and 180.31 GHz. The results matched each
other to the accuracy of the numerical differentiation with re-
spect to . It is also noted that inclusion of the radiation Jacobian
calculation for derivatives with respect to , , , and
along with the brightness calculation increased the computation
time by only a few percent, since calculation of the Jacobians
uses many of the matrices required for calculation of itself.
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Absolute speed was assessed by considering the time required
to perform brightness and Jacobian calculations on a test scat-
tering atmosphere. For these tests, we used levels and

angles on a personal computer with a 1.81-GHz clock,2

resulting in an average computation time of 4.2 ms per profile.
Using this performance as a baseline, we can scale this figure to
assess performance in an operational environment. Considering
that, on average, perhaps 10% of a global profile set will ex-
hibit significant scattering (which requires full-scale matrix op-
erations versus trivial operations using diagonal matrices) an ef-
fective speed improvement of times relative to full global
application can be applied. An additional factor of – times
was found when weakly scattering layers were approximated as
nonscattering layers requiring only diagonal (versus full matrix)
operations. Finally, use of a modern 2.8-GHz 128-processor par-
allel machine can be expected to provide an additional factor of

times speed improvement. The resulting calculation time
can, thus, be expected to be reduced to an average of s per
profile channel. We can compare this figure to the profile rate
expected to be required for assimilation of data from, e.g., the
NPOESS CMIS sensor. For CMIS, pixels comprised of
significant radiometric channels will be streamed every ms
for a 10-km regridded product, resulting in a sample period of

s per pixel-channel. Accordingly, the Jacobian tech-
nique permits a significant amount of idle time ( times)
for related operations such as profile parameter preparation (to
be addressed in a separate study), iteration, NWP model update,
and related functions.

X. SUMMARY

We have presented herein a new multiple-stream discrete-or-
dinate algorithm for fast calculation of brightness temperatures
and the associated radiation Jacobian for a plane-parallel at-
mosphere under arbitrary scattering and absorbing conditions.
Unique features of the algorithm include inherent stability of
the reflection and transmission matrix calculation and an effi-
cient means of layer adding resulting in a Jacobian calculation of
order . Scaling calculations based on the performance of
the algorithm on a standard personal computer suggest that the
new algorithm will be suitable for use in real-time all-weather
microwave radiance assimilation.

As a result of its inherent stability for all values of absorption
and scattering, the RT solution presented herein can be used to
compute the scattering-based Jacobian for any frequency. Adap-
tation to the IR and optical bands is easily performed by incor-
porating the full Planck function applied to all physical tem-
peratures, at minimal computational expense. Extension of this
approach to calculation of the two first Stokes parameters is
straightforward, since appropriate scattering matrices possess
the same fundamental symmetry properties as in the scalar case.
Generalization of the technique to include surface and bistatic
scattering effects is being pursued in a follow-on effort.

2Advanced Micro Devices (AMD) Athlon XP 2200 with 1 GB of RAM run-
ning Windows XP.
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